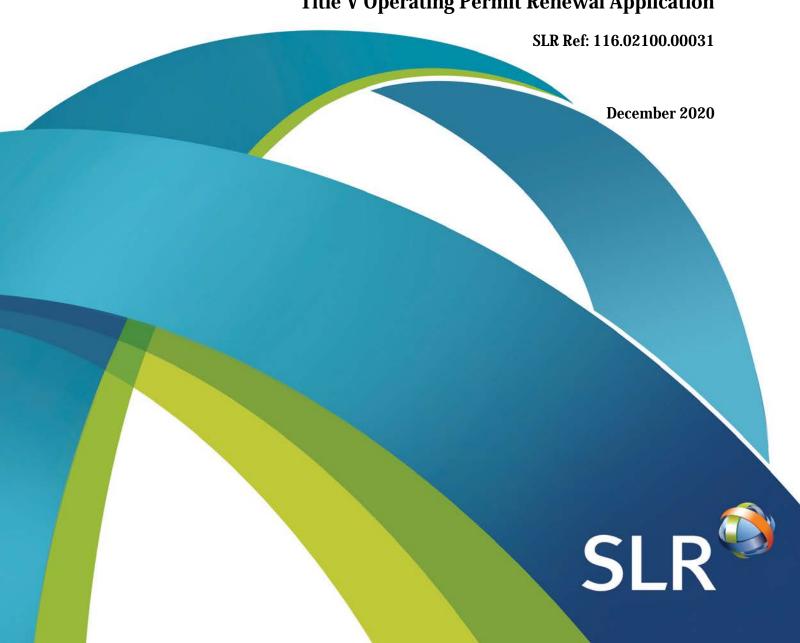

Division of Air Quality Permit Application Submittal

Pleas	e find attached a permit application for: Diversif	ied Midstream LLC; Glenville Compressor Station #37
	[Con	npany Name; Facility Location]
• C	AQ Facility ID (for existing facilities only): 021-00 urrent 45CSR13 and 45CSR30 (Title V) permits ssociated with this process (for existing facilities	
• Ty	Modification Class I Administrative Update Class II Administrative Update Relocation	 Type of 45CSR30 (TITLE V) Application: Title V Initial Title V Renewal Administrative Amendment** Minor Modification** Significant Modification** Off Permit Change **If the box above is checked, include the Title V revision information as ATTACHMENT S to the combined NSR/Title V application.
• P		emails you the Facility ID Number and Permit Application Number. Please add these identifiers to your check or cover letter
• If	Name: Wes Smith Email: wsmith@dgoc.com Phone Number: 330-896-8510 Company Contact Name: Rocky Stilwell Email: rstilwell@dgoc.com Phone Number: 330-896-8510	


Diversified Midstream LLC

Glenville Compressor Station #37

Facility ID No. 021-00010

Glenville, West Virginia

Title V Operating Permit Renewal Application

Title V Operating Permit Renewal Application

Prepared for:

Diversified Midstream LLC

101 McQuiston Drive Jackson Center, Pennsylvania 25314

This document has been prepared by SLR International Corporation. The material and data in this permit application were prepared under the supervision and direction of the undersigned.

Chris Boggess Senior Engineer

Jesse Hanshaw, P.E. Principal Engineer

CONTENTS

ATTACHMENTS

APPLICATION FOR PERMIT	
ATTACHMENT A	AREA MAP
ATTACHMENT B	PLOT PLAN
ATTACHMENT C	PROCESS FLOW DIAGRAM
ATTACHMENT D	EQUIPMENT TABLE
ATTACHMENT E	EMISSION UNIT FORM(S)
ATTACHMENT F	SCHEDULE OF COMPLIANCE FORM (SEE NOTE)
ATTACHMENT G	AIR POLLUTION CONTROL DEVICE FORM (SEE NOTE)
ATTACHMENT H	. COMPLIANCE ASSURANCE MONITORING FORM (SEE NOTE)

APPENDIX A SUPPORTING CALCULATIONS

Notes:

ATTACHMENT F - N/A - Source is in compliance with all facility wide requirements

ATTACHMENT G - N/A - No control devices utilized at the facility

ATTACHMENT H - N/A - No CAM plan requirements at the facility

APPLICATION FOR PERMIT

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF AIR QUALITY

601 57th Street SE Charleston, WV 25304

Phone: (304) 926-0475

Received
December 9, 2020
WV DEP/Div of Air Quality

www.dep.wv.gov/daq

INITIAL/RENEWAL TITLE V PERMIT APPLICATION - GENERAL FORMS

Section 1: General Information

	<u></u>	
1. Name of Applicant (As registered with the WV Secretary of State's Office):	2. Facility Name or Location:	
Diversified Midstream LLC	Glenville Compressor Station #37	
3. DAQ Plant ID No.:	4. Federal Employer ID No. (FEIN):	
021-00010	51-1618404	
5. Permit Application Type:		
☐ Initial Permit When did op	perations commence? 1943	
Permit Renewal What is the	expiration date of the existing permit? 06/09/2021	
Update to Initial/Renewal Permit Application		
6. Type of Business Entity:	7. Is the Applicant the:	
☐ Corporation ☐ Governmental Agency ☐ LLC ☐ Partnership ☐ Limited Partnership	☐Owner ☐Operator ☑Both	
8. Number of onsite employees:	If the Applicant is not both the owner and operator, please provide the name and address of the other	
	party.	
Less than ten (10) employees		
9. Governmental Code:		
☐ Privately owned and operated; 0	County government owned and operated; 3	
<u> </u>	Municipality government owned and operated; 4	
State government owned and operated; 2 District government owned and operated; 5		
10. Business Confidentiality Claims		
Does this application include confidential information (per 45CSR31)? Yes No		
If yes, identify each segment of information on each page that is submitted as confidential, and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "PRECAUTIONARY NOTICE-CLAIMS OF CONFIDENTIALITY" guidance.		

Street or P.O. Box:					
101 McQuiston Drive					
City: Jackson Center	State: PA		Zip: 16133		
Telephone Number: (724) 662 0300		Fax Number:			
12. Facility Location					
Street: 144 State Highway 5	City: Glenville	;	County	: Gilmer	
UTM Easting: 515.900 km	UTM Northin	g: 4,420.840 km	Zone: 🛭	e: 🛛 17 or 🔲 18	
Directions: From Charleston, take I-79 North to the Bursnville exit (Exit 79). Take State Route 5 North towards Glenville. Station is on the left very near the interstion of Routes 5 and 19. (approximately 16 miles on SR 5)					
Portable Source? Yes No					
Is facility located within a nonattainment area? Yes No If yes, for what air pollutants?					
Is facility located within 50 miles of another state?			name the affected state(s).		
Is facility located within 100 km of a Class I Area¹? ∑ Yes ☐ No If yes, name the area(s). Otter Creek Wilderness If no, do emissions impact a Class I Area¹? ☐ Yes ∑ No				` '	
Class I areas include Dolly Sods and Otter Creek Wilderness Areas in West Virginia, and Shenandoah National Park and James River Face Wilderness Area in Virginia.					

11. Mailing Address

13. Contact Information			
Responsible Official: Wes Smith		Title: VP Compression Services – Southern Operations	
Street or P.O. Box: 100 Diversified Way			
City: Pikeville	State: KY	Zip: 41501	
Telephone Number: (330) 896 8510	Fax Number:		
E-mail address: jwsmith@dgoc.com			
Environmental Contact: Dave Stucker		Title: EHS Department - Coordinator	
Street or P.O. Box: 125 Industrial Road			
City: Waynesburg	State: PA	Zip: 15370	
Telephone Number: (717) 668 5529	Fax Number:		
E-mail address: dstucker@dgoc.com			
Application Preparer: Jesse Hanshaw Title: Prin		Title: Principal Engineer	
Company: SLR International Corporation		l.	
Street or P.O. Box: 8 Capitol St., Suite 300			
City: Charleston	State: WV	Zip: 25301	
Telephone Number: (681) 205-8949	Fax Number: (681) 205-8969		
E-mail address: jhanshaw@slrconsulting.com	1		

14. Facility Description

List all processes, products, NAICS and SIC codes for normal operation, in order of priority. Also list any process, products, NAICS and SIC codes associated with any alternative operating scenarios if different from those listed for normal operation.

Process	Products	NAICS	SIC
Natural Gas Transmission	Natural Gas	486210	4922

Provide a general description of operations.

The Glenville Compressor Station #37 is a natural gas transmission facility covered by Standard Industrial Classification (SIC) Code 4922. The station has the potential to operate twenty-four (24) hours per day, seven (7) days per week, fifty-two (52) weeks per year. The station consists of three (3) 300 hp, 2SLB, reciprocating engines, one (1) 134 hp, 4SRB, reciprocating engine/generator and one (1) 1.26 mmBtu/hr heating boiler.

- 15. Provide an Area Map showing plant location as ATTACHMENT A.
- 16. Provide a Plot Plan(s), e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is located as **ATTACHMENT B**. For instructions, refer to "Plot Plan Guidelines."
- Provide a detailed Process Flow Diagram(s) showing each process or emissions unit as ATTACHMENT
 Process Flow Diagrams should show all emission units, control equipment, emission points, and their relationships.

Section 2: Applicable Requirements

18. Applicable Requirements Summary			
Instructions: Mark all applicable requirements.			
⊠ SIP	FIP		
Minor source NSR (45CSR13)	PSD (45CSR14)		
NESHAP (45CSR34)	Nonattainment NSR (45CSR19)		
Section 111 NSPS	Section 112(d) MACT standards		
Section 112(g) Case-by-case MACT	☐ 112(r) RMP		
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)		
Section 129 Standards/Reqts.	Stratospheric ozone (Title VI)		
Tank vessel reqt., section 183(f)	Emissions cap 45CSR§30-2.6.1		
NAAQS, increments or visibility (temp. sources)	45CSR27 State enforceable only rule		
	Acid Rain (Title IV, 45CSR33)		
Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64)		
☐ CAIR NO _x Annual Trading Program (45CSR39)	CAIR NO _x Ozone Season Trading Program (45CSR40)		
CAIR SO ₂ Trading Program (45CSR41)			
19. Non Applicability Determinations			
List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies. 45CSR4 – To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors: According to 45CSR§4-7.1, this rule shall not apply to the following sources of objectionable odor until such time as feasible control methods are developed: Internal Combustion Engines 45CSR10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides: 45CSR10 is not applicable to the facility's heater because its maximum design heat input (DHI) is less than 10 MMBtu/hr 45CSR21 – To Prevent and Control Air Pollution from the Emission of Volatile Organic Compounds: This facility is located in Gilmer County which is not one of designated VOC maintenance counties subject to the rule. VOC maintenance counties include Cabell, Kanawha, Putnam, Wayne and Wood Counties. 45CSR27 – To Prevent and Control the Emissions of Toxic Air Pollutants: Natural gas is included as a petroleum product and contains less than 5% benzene by weight. 45CSR§27-2.4 exempts equipment "used in the production and distribution of petroleum products providing that such equipment does not produce or contact materials containing more than 5% benzene by weight."			
Permit Shield			

19. Non Applicability Determinations (Continued) - Attach additional pages as necessary.

List all requirements which the source has determined not applicable and for which a permit shield is requested. The listing shall also include the rule citation and the reason why the shield applies.

- 40 CFR 60 Subpart Dc Standards of Performance for Steam Generating Units: The heating boiler at this facility is less than 10 mmBtu/hr; Hence Subpart Dc is not applicable in accordance with 60.40c(a)
- 40 CFR 60 Subparts K,Ka Standards of Performance for Storage Vessels for Petroleum Liquids: All tanks at the facility are below 40,000 gallons in capacity as specified in 60.110a(a)
- 40 CFR 60 Subpart Kb Standards of Performance for Volatile Organic Liquid Storage Vessels: All tanks at the facility are below 75m³ (19,813 gallons) in capacity as specified in 60.110b(a)
- 40 CFR 60 Subpart KKK Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plant: This compressor station is not engaged in the extraction or fractionation of natural gas liquids from field gas, the fractionation of mixed natural gas liquids to natural gas products, or both.
- 40 CFR 60 Subpart IIII Standards of Performance for Stationary Compression Ignition Internal Combustion Engines: There are no compression ignition engines at this facility.
- 40 CFR 60 Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines: All engines at the facility were constructed, reconstructed, or modified prior to the June 12, 2006 applicability date listed in 60.4230(a)(4).
- 40 CFR 60 Subpart OOOO Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution: This subpart does not apply to the facility since the facility is a transmission facility. So it is exempt from the requirements for gas wells, centrifugal compressors, reciprocating compressors, and/or pneumatic controllers. Although this applies to storage vessels located at transmission facilities, there have been no storage vessels constructed, modified, or reconstructed after August 23, 2011 in accordance with 60.5365(e).
- 40 CFR 60 Subpart OOOOa Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015. The GHG and VOC requirements defined by this NSPS are not applicable to this site because there were no affected sources that commenced constructed prior to September 18, 2015 in accordance with [40CFR§60.5365a]
- 40 CFR 63 Subpart HHH National Emission Standards for Hazardous Air Pollutants from Natural gas Transmission and Storage Facilities: This subpart does not apply to the facility since it is not a major source of HAPs as defined in 40CFR§63.1270(a) and does not operate a dehydration process.
- 40 C.F.R. 63 Subpart DDDDD; *National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters:* This subpart does not apply to the facility since it is not a major source of HAPs as defined in 40CFR§63.7575.
- 40 C.F.R. 63 Subpart JJJJJJ; *National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources:* This subpart does not apply to the facility since the heating boiler is fueled by natural gas as defined in 40CFR§63.11195(e).
- 40 CFR 64 Compliance Assurance Monitoring (CAM): There are no add-on controls at this facility; therefore, in accordance with 40CFR§64.2(b)(1), CAM is not applicable to this facility.to this facility.

X	Permit	Shield
$I \wedge I$	1 CHIIII	. Sinciu

20. Facility-Wide Applicable Requirements

List all facility-wide applicable requirements. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*).

- T5 3.1.1 45 CSR 6-3.1 Open burning prohibited
- T5 3.1.2 45 CSR 6-3.2 Open burning exemption stipulations
- T5 3.1.3 40 CFR Part 61 and 45 CSR 34 Asbestos inspection and removal
- T5 3.1.4 45 CSR 4 No objectionable odors
- T5 3.1.5 45 CSR 11-5.2 Standby plans for emergency episodes
- T5 3.1.6 WV Code 22-5-4 (a) (14) Annual emission inventory reporting
- T5 3.1.7 40 CFR Part 82 Subpart F Ozone depleting substances
- T5 3.1.8 40 CFR Part 68 Risk Management Plan
- T5 3.1.9 45 CSR 17-3.1 Fugitive PM prohibited
- T5 3.3.1 45 CSR 22-5-4(a)(14-15) & 45CSR13 Stack Testing Conduct stack testing as required
- T5 3.4.1 45 CSR 30-5.1 Monitoring information general monitoring requirements
- T5 3.4.2 45 CSR 30-5.1 Retention of records Maintain records for a period of 5 years
- T5 3.4.3 45 CSR 30-5.1 Odors Maintain records of odor complaints and corrective actions
- T5 3.4.4 45 CSR 17.3 Fugitive PM shall not cause statutory Air Pollution
- T5 3.5.1 45 CSR 30-4.4. and 5.1.c.3.D All documents required by permit shall be certified by a Responsible Official
- T5 3.5.2 45 CSR 30-5.1.c.3.E. A permittee may request confidential treatment
- T5 3.5.3 45 CSR 30-5 Communication required or permitted to be made to the DEP and/or USEPA
- T5 3.5.4 45 CSR 30-8 Certified emissions statement Operator will Submit a certified emissions statement and pay fees on an annual basis
- T5 3.5.5 45 CSR 30-5.3.e. Compliance certification. The permittee shall certify compliance with the conditions of this permit on the forms provided by the DAQ
- T5 3.5.6 45 SR§30-5.1.c.3.A Semi-annual monitoring reports.
- T5 3.5.7 45 CSR 30-5.7.a through e. Emergencies
- T5 3.5.8 45 CSR 30-5.1.c.3.B. and C. Deviations
- T5 3.5.9 45 CSR 30-4.3.h.1.B. New applicable requirements. If any requirement is promulgated, the permittee will meet such requirements on a timely basis

Permit Shield

For all facility-wide applicable requirements listed above, provide monitoring/testing / recordkeeping / reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number and/or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.) T5 – 3.1.3 – 40 CFR Part 61 and 45 CSR 34 – Prior to demolition/construction buildings will be inspected for asbestos and documented accordingly T5 – 3.1.4 – 45 CSR 4 – Permittee shall maintain records of all odor complaints received T5 – 3.1.5 – 45 CSR 11 – Upon request by the Secretary, the permittee shall prepare a standby plan T5 – 3.1.6 – WV 22-5-4 – The permittee shall submit annual emission inventory reports T5 – 3.1.7 – 40 CFR Part 82 Subpart F – The permittee will prohibit maintenance, service, or repair of appliances containing ozone depleting substances without persons certified pursuant to 40 CFR 82.161 T5 – 3.1.8 – 40 CFR Part 68 – Should the permittee become subject to 40 CFR Part 68, a RMP shall be submitted T5 - 3.3.1 - 45 CSR 22-5-4 Stack Testing - All protocols and reports will be submitted to the WVDAQ T5 – 3.4.1 & 3.4.2 – 45 CSR 30-5.1 Retention of Records - Maintain records of all information required by permit for 5 yrs. T5 – 3.4.3 – 45 CSR 30-5.1 Odors - Maintain records of all odor complaints and responses. T5 – 3.5.1 – 45 CSR 30-4.4 and 5.1 Responsible Official - Reports, certifications, etc. shall contain a certification by the responsible official. T5 - 3.5.4 - 45 CSR 30-8 Certified emissions statement - Operator will Submit a certified emissions statement and pay fees on an annual basis T5 – 3.5.5 – 45 SR§30-5.3.e Compliance Certification - Prepare and submit an emission inventory as requested T5 – 3.5.6 – 45 CSR§30-5.1.c.3.A. Semi-annual monitoring reports. T5 – 3.5.7 – 45 CSR30-5.7.a through e. - For reporting emergency situations, refer to Section 2.17 of this permit T5 – 3.5.8 – 45 CSR 30-5.1.c.3.B. and C. – Deviations, In addition to required monitoring reports, the permittee shall promptly submit supplemental reports and notices of deviations / include upset conditions, cause of deviation (s) and corrective actions. T5 – 3.5.9 – 45 CSR 30-4.3.h.1.B. New applicable requirements. If any requirement is promulgated, the permittee will meet such requirements on a timely basis

Are you in compliance with all facility-wide applicable requirements? X Yes

If no, complete the Schedule of Compliance Form as ATTACHMENT F.

Permit or Consent Order Number	Date of Issuance MM/DD/YYYY	List any Permit Determinations that Affect the Permit (if any)
R30-02100010-2016	06/09/2016	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	

Permit Number	Date of Issuance	Permit Condition Number
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	1 1	
	/ /	
	1 1	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	
	/ /	

Section 3: Facility-Wide Emissions

ar]
Potential Emissions
15.90
125.57
-
1.95
1.95
1.95
0.03
8.23
Potential Emissions
0.09
0.04
0.01
0.01
0.03
2.18
3.17
Potential Emissions
5404.80

 $^{1}PM_{2.5}$ and PM_{10} are components of TSP.

 2 For HAPs that are also considered PM or VOCs, emissions should be included in both the HAPs section and the Criteria Pollutants section.

Section 4: Insignificant Activities

24.	Insign	ificant Activities (Check all that apply)
	1.	Air compressors and pneumatically operated equipment, including hand tools.
	2.	Air contaminant detectors or recorders, combustion controllers or shutoffs.
	3.	Any consumer product used in the same manner as in normal consumer use, provided the use results in a duration and frequency of exposure which are not greater than those experienced by consumer, and which may include, but not be limited to, personal use items; janitorial cleaning supplies, office supplies and supplies to maintain copying equipment.
	4.	Bathroom/toilet vent emissions.
	5.	Batteries and battery charging stations, except at battery manufacturing plants.
	6.	Bench-scale laboratory equipment used for physical or chemical analysis, but not lab fume hoods or vents. Many lab fume hoods or vents might qualify for treatment as insignificant (depending on the applicable SIP) or be grouped together for purposes of description.
	7.	Blacksmith forges.
	8.	Boiler water treatment operations, not including cooling towers.
	9.	Brazing, soldering or welding equipment used as an auxiliary to the principal equipment at the source.
	10.	CO2 lasers, used only on metals and other materials which do not emit HAP in the process.
	11.	Combustion emissions from propulsion of mobile sources, except for vessel emissions from Outer Continental Shelf sources.
	12.	Combustion units designed and used exclusively for comfort heating that use liquid petroleum gas or natural gas as fuel.
\boxtimes	13.	Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.
	14.	Demineralized water tanks and demineralizer vents.
	15.	Drop hammers or hydraulic presses for forging or metalworking.
	16.	Electric or steam-heated drying ovens and autoclaves, but not the emissions from the articles or substances being processed in the ovens or autoclaves or the boilers delivering the steam.
	17.	Emergency (backup) electrical generators at residential locations.

	insigni	significant Activities (Check all that apply)										
	18.	Emergency road flares.										
	10.											
	19.	Emission units which do not have any applicable requirements and which emit criteria pollutants (CO,										
		NO _x , SO ₂ , VOC and PM) into the atmosphere at a rate of less than 1 pound per hour and less than 10,000 pounds per year aggregate total for each criteria pollutant from all emission units.										
		10,000 pounds per	year aggreg	ate total for	each criter	ia pol	lutant from	all emission i	inits.			
		Please specify all e	mission unit	s for which	this exemr	ntion a	nnlies alon	g with the au:	antity of criteria			
		pollutants emitted				ouon u	ppiles alon,	5 with the qui	antity of criteria			
		1	•									
		Hot Water Heater										
		Pollutant	PM			NOx	CC					
		Emissions (lb/hr)			00	0.00	0.0					
		Emissions (lb/yr)	1.62	0.	13	21.31	17.9	00 1.1	7			
		Miscellaneous Emi	ssion Units									
		Emission Poi		OC Emission	ns (lb/hr)	V	OC Emissio	ons (lh/vr)				
		Tank 1	,,,	0.00			1.54	. • /				
		Tank 2		0.00			1,618.					
		Fugitives		0.40			3,488.					
		Blowdowns		0.19			1,698.	47				
		Totals		0.78	1		6,805.	87				
\Box	20.	Emission units whi	ch do not ha	ive any app	licable reau	ıireme	nts, and wh	nich emit haza	rdous air pollutan	ts		
			all HAPs fro	om all emiss	sion course	into the atmosphere at a rate of less than 0.1 pounds per hour and less than 1,000 pounds per year						
		aggregate total for all HAPs from all emission sources. This limitation cannot be used for any source which emits dioxin/furans nor for toxic air pollutants as per 45CSR27.							ed for any source			
		which emits dioxin							ed for any source			
			/furans nor	for toxic air	pollutants	as per	45CSR27.			0		
		Please specify all e	/furans nor : mission unit	for toxic air	pollutants this exemp	as per	45CSR27.			s		
			/furans nor : mission unit	for toxic air	pollutants this exemp	as per	45CSR27.			S		
		Please specify all e	/furans nor a	for toxic air	pollutants this exemp	as per	45CSR27.			S		
		Please specify all e air pollutants emitt	/furans nor a	for toxic air	pollutants this exemp	as per	45CSR27.			S		
		Please specify all e air pollutants emitt	/furans nor a mission unit ed on an hou (HWH01)	for toxic air	pollutants this exemp nual basis:	as per otion a	45CSR27.	g with the qua	antity of hazardou	S		
		Please specify all e air pollutants emitt Hot Water Heater Pollutant	/furans nor amission united on an hou (HWH01) Benzene	for toxic air s for which urly and anr Toluene	this exemple the policy of the	as per ption a	45CSR27. pplies alon Xylenes	g with the qua	antity of hazardou Total HAPs	S		
		Please specify all e air pollutants emitt Hot Water Heater (Pollutant Emissions (lb/hr) Emissions (lb/yr)	/furans nor mission united on an house (HWH01) Benzene 0.00	for toxic air s for which urly and anr Toluene 0.00	this exemplicate this exemplicate that the exemplication is the exemplication of the exemplication of the exemplication is the exemplication of the exemplic	as per ption a	45CSR27. pplies alon Xylenes 0.00	g with the quantum of the property of the prop	Total HAPs 0.00	S		
		Please specify all e air pollutants emitt Hot Water Heater (Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives	/furans nor amission united on an hou (HWH01) Benzene 0.00 0.00	for toxic air s for which arly and ann Toluene 0.00 0.00	this exemplicate that the pollutants the pollutants that the pollutants that the pollutants that the pollutants the pollutants the pollutants that the pollutants the	as per ption a zene	45CSR27. pplies alon Xylenes 0.00 0.00	n-Hexane 0.00 0.38	Total HAPs 0.00 0.40	S		
		Please specify all e air pollutants emitt Hot Water Heater Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant	/furans nor mission united on an hou (HWH01) Benzene 0.00 0.00 Benzene	for toxic air as for which arly and anr Toluene 0.00 0.00 Toluene	this exemplicates the pollutants of this exemplicates the pollutants of the pollutan	as per ption a zene	Xylenes 0.00 0.00 Xylenes	n-Hexane 0.00 0.38	Total HAPs 0.00 0.40 Total HAPs	S		
		Please specify all e air pollutants emitt Hot Water Heater (Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr)	/furans nor amission united on an house (HWH01) Benzene 0.00 0.00 Benzene 0.00	for toxic air as for which arly and anr Toluene 0.00 0.00 Toluene 0.00	this exemplicate the pollutants of the pollutant	as per ption a zene	Xylenes 0.00 Xylenes 0.00 Xylenes 0.00	n-Hexane 0.00 0.38 n-Hexane 0.00	Total HAPs 0.00 0.40 Total HAPs 0.000	S		
		Please specify all e air pollutants emitt Hot Water Heater Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant	/furans nor mission united on an hou (HWH01) Benzene 0.00 0.00 Benzene	for toxic air as for which arly and anr Toluene 0.00 0.00 Toluene	this exemplicates the pollutants of this exemplicates the pollutants of the pollutan	as per ption a zene	Xylenes 0.00 0.00 Xylenes	n-Hexane 0.00 0.38	Total HAPs 0.00 0.40 Total HAPs	S		
		Please specify all e air pollutants emitt Hot Water Heater (Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/yr)	### ##################################	for toxic air as for which arly and anr Toluene 0.00 0.00 Toluene 0.00	this exemplicate the pollutants of the pollutant	as per ption a zene	Xylenes 0.00 Xylenes 0.00 Xylenes 0.00	n-Hexane 0.00 0.38 n-Hexane 0.00	Total HAPs 0.00 0.40 Total HAPs 0.000	S		
		Please specify all e air pollutants emitt Hot Water Heater Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/yr)	/furans nor amission united on an hou (HWH01) **Benzene** 0.00 **Benzene** 0.00 15.56	for toxic air s for which arly and ann Toluene 0.00 0.00 Toluene 0.00 0.02	this exemplicate the pollutants of the pollutant	as per otion a zene	Xylenes 0.00 0.00 Xylenes 0.00 3.46	n-Hexane 0.00 0.38 n-Hexane 0.00 3.46	Total HAPs 0.00 0.40 Total HAPs 0.00 24.22	S		
		Please specify all e air pollutants emitt Hot Water Heater Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/yr) Blowdown Venting Pollutant	mission united on an house (HWH01) Benzene 0.00 0.00 Benzene 0.00 15.56 Benzene	for toxic air s for which arly and ann Toluene 0.00 0.00 Toluene 0.00 0.02 Toluene	Ethylben: Capthylben: Capthyl	as perotion a zene zene	Xylenes 0.00 0.00 Xylenes 0.00 3.46 Xylenes	n-Hexane 0.00 0.38 n-Hexane 0.00 3.46	Total HAPs 0.00 0.40 Total HAPs 0.00 24.22 Total HAPs	S		
		Please specify all e air pollutants emitt Hot Water Heater Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/yr)	/furans nor amission united on an hou (HWH01) **Benzene** 0.00 **Benzene** 0.00 15.56	for toxic air s for which arly and ann Toluene 0.00 0.00 Toluene 0.00 0.02	this exemplicate the pollutants of the pollutant	as per ption a zene	Xylenes 0.00 0.00 Xylenes 0.00 3.46	n-Hexane 0.00 0.38 n-Hexane 0.00 3.46	Total HAPs 0.00 0.40 Total HAPs 0.00 24.22	s		
		Please specify all e air pollutants emitt Hot Water Heater (Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/hr)	/furans nor mission united on an hor mission u	for toxic air s for which arly and ann Toluene 0.00 0.00 Toluene 0.00 0.02 Toluene 0.00	this exemplicate the pollutants of the pollutant	as per ption a zene	Xylenes	n-Hexane 0.00 0.38 n-Hexane 0.00 3.46 n-Hexane 0.00	Total HAPs 0.00 0.40 Total HAPs 0.00 24.22 Total HAPs 0.00 24.00	s		
	21.	Please specify all e air pollutants emitt Hot Water Heater Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/yr)	### April 19 ##	for toxic air s for which arly and ann Toluene 0.00 0.00 Toluene 0.00 0.02 Toluene 0.00 0.02	Ethylbens 0.00 1.73 Ethylbens 0.00 0.00	as perotion a zene zene	Xylenes 0.00 0.00 Xylenes 0.00 3.46 Xylenes 0.00 1.68	n-Hexane 0.00 0.38 n-Hexane 0.00 3.46 n-Hexane 0.00 1.68	Total HAPs 0.00 0.40 Total HAPs 0.00 24.22 Total HAPs 0.00 24.00	s		
	21.	Please specify all e air pollutants emitt Hot Water Heater (Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/yr) Blowdown Venting Pollutant Emissions (lb/hr) Emissions (lb/yr) Environmental characteristics	### ### ##############################	Toluene 0.00 Toluene 0.00 Toluene 0.00 0.00 Toluene 0.00 0.01	this exemplicate this e	zene	Xylenes 0.00 Xylenes 0.00 3.46 Xylenes 0.00 1.68	n-Hexane 0.00 0.38 n-Hexane 0.00 3.46 n-Hexane 0.00 1.68	Total HAPs 0.00 0.40 Total HAPs 0.00 24.22 Total HAPs 0.00 11.79	s		
	21. 22.	Please specify all e air pollutants emitt Hot Water Heater Pollutant Emissions (lb/hr) Emissions (lb/yr) Fugitives Pollutant Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/hr) Emissions (lb/yr)	mission united on an horizontal ded on an horizonta	Toluene 0.00 Toluene 0.00 Toluene 0.00 Toluene 0.00 0.01 Toluene 0.00 0.01	this exemplicate this e	zene	Xylenes 0.00 Xylenes 0.00 3.46 Xylenes 0.00 1.68	n-Hexane 0.00 0.38 n-Hexane 0.00 3.46 n-Hexane 0.00 1.68	Total HAPs 0.00 0.40 Total HAPs 0.00 24.22 Total HAPs 0.00 11.79	s		

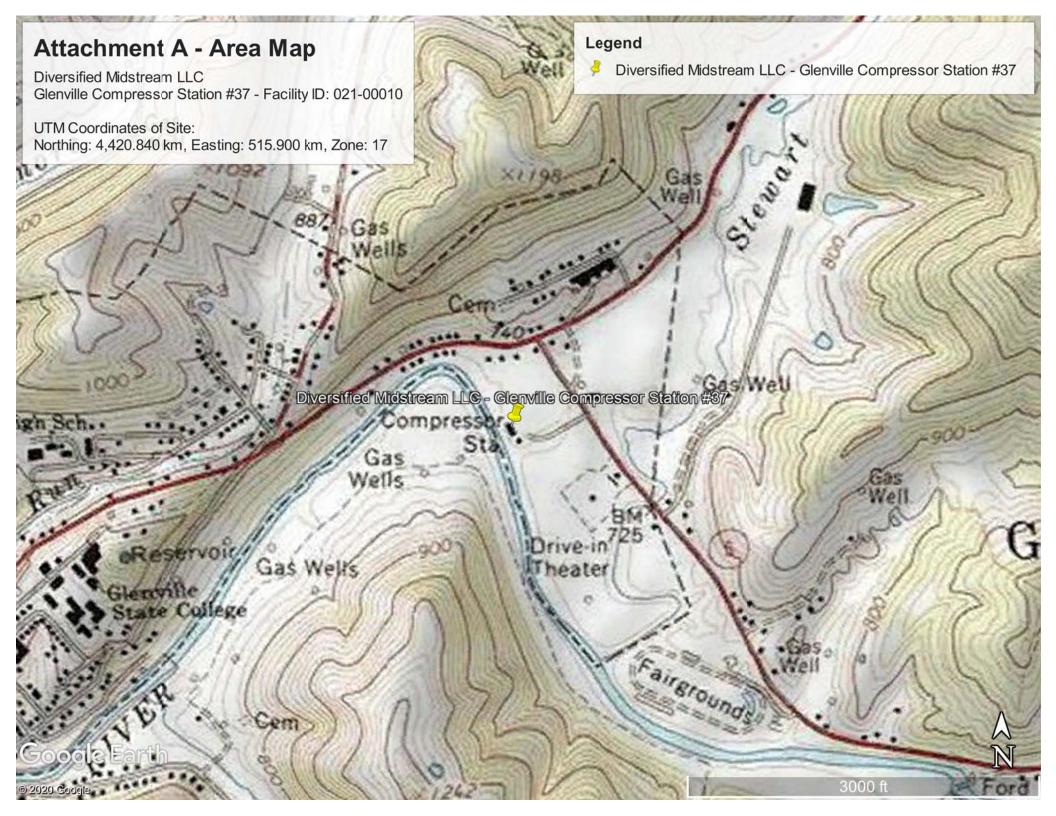
24.	Insign	ificant Activities (Check all that apply)
		such as rendering cookers, boilers, heating plants, incinerators, and electrical power generating equipment.
	24.	Equipment used for quality control/assurance or inspection purposes, including sampling equipment used to withdraw materials for analysis.
	25.	Equipment used for surface coating, painting, dipping or spray operations, except those that will emit VOC or HAP.
\boxtimes	26.	Fire suppression systems.
	27.	Firefighting equipment and the equipment used to train firefighters.
	28.	Flares used solely to indicate danger to the public.
	29.	Fugitive emission related to movement of passenger vehicle provided the emissions are not counted for applicability purposes and any required fugitive dust control plan or its equivalent is submitted.
	30.	Hand-held applicator equipment for hot melt adhesives with no VOC in the adhesive formulation.
\boxtimes	31.	Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.
	32.	Humidity chambers.
	33.	Hydraulic and hydrostatic testing equipment.
	34.	Indoor or outdoor kerosene heaters.
\boxtimes	35.	Internal combustion engines used for landscaping purposes.
	36.	Laser trimmers using dust collection to prevent fugitive emissions.
	37.	Laundry activities, except for dry-cleaning and steam boilers.
\boxtimes	38.	Natural gas pressure regulator vents, excluding venting at oil and gas production facilities.
	39.	Oxygen scavenging (de-aeration) of water.
	40.	Ozone generators.
	41.	Plant maintenance and upkeep activities (e.g., grounds-keeping, general repairs, cleaning, painting, welding, plumbing, re-tarring roofs, installing insulation, and paving parking lots) provided these activities are not conducted as part of a manufacturing process, are not related to the source's primary business activity, and not otherwise triggering a permit modification. (Cleaning and painting activities qualify if they are not subject to VOC or HAP control requirements. Asphalt batch plant owners/operators must still get a permit if otherwise requested.)
	42.	Portable electrical generators that can be moved by hand from one location to another. "Moved by Hand" means that it can be moved without the assistance of any motorized or non-motorized vehicle, conveyance, or device.
\boxtimes	43.	Process water filtration systems and demineralizers.
	44.	Repair or maintenance shop activities not related to the source's primary business activity, not including emissions from surface coating or de-greasing (solvent metal cleaning) activities, and not otherwise triggering a permit modification.
	45.	Repairs or maintenance where no structural repairs are made and where no new air pollutant emitting facilities are installed or modified.
	46.	Routing calibration and maintenance of laboratory equipment or other analytical instruments.
	47.	Salt baths using nonvolatile salts that do not result in emissions of any regulated air pollutants. Shock chambers.
	48.	Shock chambers.
	49.	Solar simulators.
\boxtimes	50.	Space heaters operating by direct heat transfer.

24.	Insign	ificant Activities (Check all that apply)
	51.	Steam cleaning operations.
	52.	Steam leaks.
	53.	Steam sterilizers.
	54.	Steam vents and safety relief valves.
	55.	Storage tanks, reservoirs, and pumping and handling equipment of any size containing soaps, vegetable oil, grease, animal fat, and nonvolatile aqueous salt solutions, provided appropriate lids and covers are utilized.
	56.	Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any VOC or HAP. Exemptions for storage tanks containing petroleum liquids or other volatile organic liquids should be based on size limits such as storage tank capacity and vapor pressure of liquids stored and are not appropriate for this list.
	57.	Such other sources or activities as the Director may determine.
	58.	Tobacco smoking rooms and areas.
\boxtimes	59.	Vents from continuous emissions monitors and other analyzers.
		Emission Units, Control Devices, and Emission Points pment Table
	Fill o	ut the Title V Equipment Table and provide it as ATTACHMENT D .
26.	Emis	sion Units
		ach emission unit listed in the Title V Equipment Table , fill out and provide an Emission Unit Form TTACHMENT E .
		ach emission unit not in compliance with an applicable requirement, fill out a Schedule of Compliance as ATTACHMENT F .
27.	Cont	rol Devices
		ach control device listed in the Title V Equipment Table , fill out and provide an Air Pollution Control ce Form as ATTACHMENT G .
	the po	ny control device that is required on an emission unit in order to meet a standard or limitation for which otential pre-control device emissions of an applicable regulated air pollutant is greater than or equal to itle V Major Source Threshold Level, refer to the Compliance Assurance Monitoring (CAM) Form(s) AM applicability. Fill out and provide these forms, if applicable, for each Pollutant Specific Emission (PSEU) as ATTACHMENT H .

28.	Certification of Truth, Accuracy and Completeness and Certification of Compliance							
Not	Note: This Certification must be signed by a responsible official. The original, signed in blue ink, must be submitted with the application. Applications without an original signed certification will be considered as incomplete.							
а. (Certification of Truth, Accuracy and Completeness							
this I ce sub resp kno fals	ertify that I am a responsible official (as defined at 45CSR§30-2.38) and am accordingly authorized to make a submission on behalf of the owners or operators of the source described in this document and its attachments. Extify under penalty of law that I have personally examined and am familiar with the statements and information mitted in this document and all its attachments. Based on my inquiry of those individuals with primary consibility for obtaining the information, I certify that the statements and information are to the best of my owledge and belief true, accurate, and complete. I am aware that there are significant penalties for submitting the statements and information or omitting required statements and information, including the possibility of fine for imprisonment.							
b. (Compliance Certification							
und	cept for requirements identified in the Title V Application for which compliance is not achieved, I, the lersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air traminant sources identified in this application are in compliance with all applicable requirements.							
Res	sponsible official (type or print)							
Nar	me: Wes Smith Title: VP Compression Services – Southern Operations							
	nature: Signature Date: 12 8-2020 (Must be signed and dated in blue ink)							
Not	Receive December S te: Please check all applicable attachments included with this permit application: WV DEP/Div of	, 2020						
\boxtimes	ATTACHMENT A: Area Map							
\boxtimes	ATTACHMENT B: Plot Plan(s)							
\boxtimes								
\boxtimes	ATTACHMENT D: Equipment Table							
\boxtimes	ATTACHMENT E: Emission Unit Form(s)							
	ATTACHMENT F: Schedule of Compliance Form(s)							
	ATTACHMENT G: Air Pollution Control Device Form(s)	8						
	ATTACHMENT H: Compliance Assurance Monitoring (CAM) Form(s)							

All of the required forms and additional information can be found and downloaded from, the DEP website at $\underline{www.dep.wv.gov/daq}$, requested by phone (304) 926-0475, and/or obtained through the mail.

ATTACHMENT A

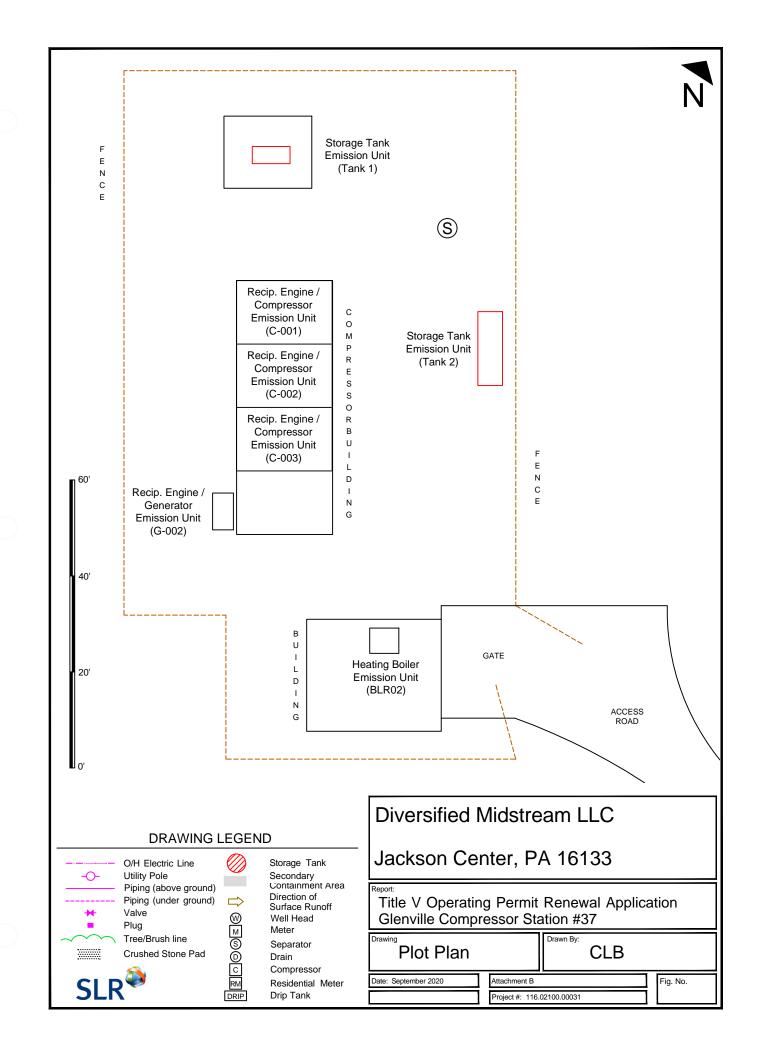

AREA MAP

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

ATTACHMENT B


PLOT PLAN

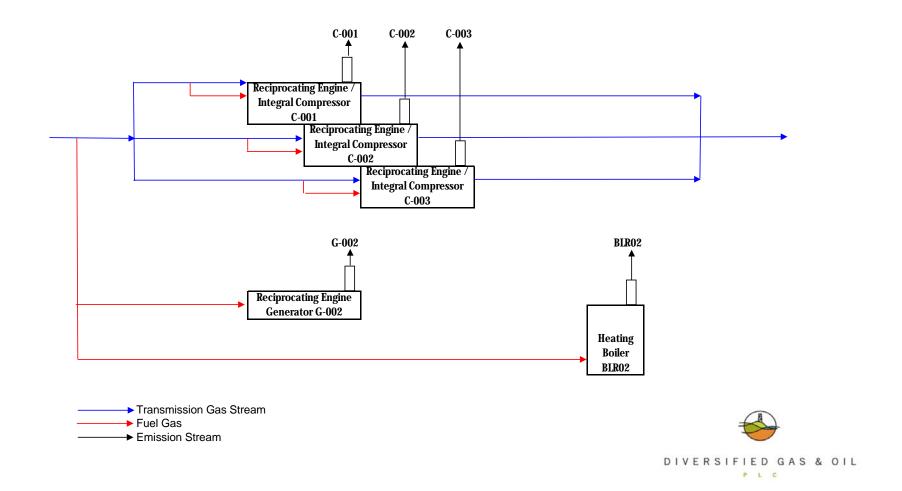
Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

ATTACHMENT C

PROCESS FLOW DIAGRAM


Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

ATTACHMENT C GLENVILLE COMPRESSOR STATION #37 PROCESS FLOW DIAGRAM

ATTACHMENT D

EQUIPMENT TABLE

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

ATTACHMENT D - Title V Equipment Table

(includes all emission units at the facility except those designated as insignificant activities in Section 4, Item 19 of the General Forms)

Emission Point ID ¹	Control Device ¹	Emission Unit ID ¹	Emission Unit Description	Design Capacity	Year Installed/ Modified
C-001	N/A	C-001*	Reciprocating Engine/Integral Compressor; Clark RA-32; 2 Stroke, Lean Burn	300 hp	1943
C-002	N/A	C-002*	Reciprocating Engine/Integral Compressor; Clark RA-32; 2 Stroke, Lean Burn	300 hp	1943
C-003	N/A	C-003*	Reciprocating Engine/Integral Compressor; Clark RA-32; 2 Stroke, Lean Burn	300 hp	1943
G-002	N/A	G-002*	Reciprocating Engine/Generator; Kohler 100RZDGD; 4 Stroke, Rich Burn	134.1 hp	2018
BLR02	N/A	BLR02*	Heating Boiler; Raypack; Model No. H8-1259B	1.26 mmBtu/hr	2017

¹For 45CSR13 permitted sources, the numbering system used for the emission points, control devices, and emission units should be consistent with the numbering system used in the 45CSR13 permit. For grandfathered sources, the numbering system should be consistent with registrations or emissions inventory previously submitted to DAQ. For emission points, control devices, and emissions units which have not been previously labeled, use the following 45CSR13 numbering system: 1S, 2S, 3S,... or other appropriate description for emission units; 1C, 2C, 3C,... or other appropriate designation for control devices; 1E, 2E, 3E, ... or other appropriate designation for emission points.

^{*}This equipment burns pipeline quality natural gas only.

ATTACHMENT E

EMISSION UNIT FORM(S)

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

ATT	ACHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number C-001	List any control devices associated with this emission unit:		
Provide a description of the emission Reciprocating Engine / Integral Con		-	.):
Manufacturer: Clark	Model number: RA-32	Serial number: NA	
Construction date: 1943	Installation date: 1943	Modification date(s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 300 HI	•	
Maximum Hourly Throughput: NA	Maximum Annual Throughput: NA	Maximum Operating Schedule: 8,760	
Fuel Usage Data (fill out all applicat	ole fields)		
Does this emission unit combust fuel	1? <u>X_</u> Yes No	If yes, is it? Indirect Fired	X Direct Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	ting of burners:
300 HP		10,000 Btu/hp-hr	
List the primary fuel type(s) and if a the maximum hourly and annual fue Natural Gas 2,433.1 scf/hr / 21,313,956 scf/yr). For each fuel type	listed, provide
Describe each fuel expected to be us	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	Pipeline Quality		1,233 Btu/scf

Emissions Data					
Criteria Pollutants	Potential Emissions				
	РРН	TPY			
Carbon Monoxide (CO)	See A _J	ppendix A			
Nitrogen Oxides (NO _X)					
Lead (Pb)					
Particulate Matter (PM _{2.5})					
Particulate Matter (PM ₁₀)					
Total Particulate Matter (TSP)					
Sulfur Dioxide (SO ₂)					
Volatile Organic Compounds (VOC)					
Hazardous Air Pollutants	Potentia	l Emissions			
	PPH	TPY			
	See A _J	ppendix A			
Regulated Pollutants other than	Potentia	Potential Emissions			
Criteria and HAP	РРН	TPY			
List the method(s) used to calculate versions of software used, source and		s of any stack tests conducted,			
See Appendix A					
••					

Anni	lical	hlo	Rec	nuirem	onte
ADDI	иса	oie	Kea	ıuırem	ienis

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

40 C.F.R. 63 Subpart ZZZZ

40 C.F.R. § 63.6603(a) and Table 2d (Line 6) – Maintenance Requirements

40 C.F.R. § 63.6605 – Operating Requirements

40 C.F.R. § 63.6625(e)(5), (h), and (j) – Monitoring Requirements

40 C.F.R. § 63.6640(a) and Table 6 (Line 9) – Continuous Compliance Requirements

40 C.F.R. § 63.6660 - Recordkeeping Requirements

40 C.F.R. § 63.6665 - General Requirements/Provisions

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. 63 Subpart **ZZZZ**

40 C.F.R. § 63.6603(a) and Table 2d (Line 6) – Change oil and oil filter, and inspect spark plugs, hoses, and belts every 4,320 hours of operation, or annually, whichever occurs first, and replace as necessary

40 C.F.R. § 63.6605, 63.6625(e)(5), 63.6640 and Table 6 (Line 9) – Work or Management Practices: Operate and Maintain the RICE according to the manufacturer's instructions OR develop and follow your own maintenance plan

40 C.F.R. § 63.6625 (h) – Minimize Idle Time during Startup to not exceed 30 Minutes

40 C.F.R. § 63.6625 (j) – Oil Analysis Program in lieu of Oil change requirement in Table 2d (Line 6)

40 C.F.R. § 63.6655 (d), and (e)(3) – Keep records of maintenance conducted and operating schedule on the RICE

40 C.F.R. § 63.6660 – Records retained for five (5) years and readily available for expeditious review

Are you in compliance with all applicable requirements for this emission unit? X Yes ____No

If no, complete the **Schedule of Compliance Form** as **ATTACHMENT F**.

ATT	ACHMENT E - Emission Uni	t Form		
Emission Unit Description				
Emission unit ID number C-002	List any control devices associated with this emission unit:			
Provide a description of the emission Reciprocating Engine / Integral Con		-	.):	
Manufacturer: Clark	Model number: RA-32	Serial number: NA		
Construction date: 1943	Installation date: 1943	Modification date(s):	
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 300 HI)		
Maximum Hourly Throughput: NA	Maximum Annual Throughput: NA	Maximum Operating Schedule: 8,760		
Fuel Usage Data (fill out all applicat	ole fields)			
Does this emission unit combust fuel	1? <u>X_</u> Yes No	If yes, is it? Indirect Fired	X Direct Fired	
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	ting of burners:	
300 HP		10,000 Btu/hp-hr		
List the primary fuel type(s) and if a the maximum hourly and annual fue Natural Gas 2,433.1 scf/hr / 21,313,956 scf/yr). For each fuel type	listed, provide	
Describe each fuel expected to be us	ed during the term of the permit.			
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value	
Natural Gas	Pipeline Quality		1,233 Btu/scf	

Emissions Data					
Criteria Pollutants	Potential Emissions				
	РРН	TPY			
Carbon Monoxide (CO)	See A _J	ppendix A			
Nitrogen Oxides (NO _X)					
Lead (Pb)					
Particulate Matter (PM _{2.5})					
Particulate Matter (PM ₁₀)					
Total Particulate Matter (TSP)					
Sulfur Dioxide (SO ₂)					
Volatile Organic Compounds (VOC)					
Hazardous Air Pollutants	Potentia	l Emissions			
	PPH	TPY			
	See A _J	ppendix A			
Regulated Pollutants other than	Potentia	Potential Emissions			
Criteria and HAP	РРН	TPY			
List the method(s) used to calculate versions of software used, source and		s of any stack tests conducted,			
See Appendix A					
••					

Anni	lical	hlo	Rec	nuirem	onte
ADDI	иса	oie	Kea	ıuırem	ienis

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

40 C.F.R. 63 Subpart ZZZZ

40 C.F.R. § 63.6603(a) and Table 2d (Line 6) – Maintenance Requirements

40 C.F.R. § 63.6605 – Operating Requirements

40 C.F.R. § 63.6625(e)(5), (h), and (j) – Monitoring Requirements

40 C.F.R. § 63.6640(a) and Table 6 (Line 9) – Continuous Compliance Requirements

40 C.F.R. § 63.6660 - Recordkeeping Requirements

40 C.F.R. § 63.6665 - General Requirements/Provisions

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. 63 Subpart **ZZZZ**

40 C.F.R. § 63.6603(a) and Table 2d (Line 6) – Change oil and oil filter, and inspect spark plugs, hoses, and belts every 4,320 hours of operation, or annually, whichever occurs first, and replace as necessary

40 C.F.R. § 63.6605, 63.6625(e)(5), 63.6640 and Table 6 (Line 9) – Work or Management Practices: Operate and Maintain the RICE according to the manufacturer's instructions OR develop and follow your own maintenance plan

40 C.F.R. § 63.6625 (h) – Minimize Idle Time during Startup to not exceed 30 Minutes

40 C.F.R. § 63.6625 (j) – Oil Analysis Program in lieu of Oil change requirement in Table 2d (Line 6)

40 C.F.R. § 63.6655 (d), and (e)(3) – Keep records of maintenance conducted and operating schedule on the RICE

40 C.F.R. § 63.6660 – Records retained for five (5) years and readily available for expeditious review

Are you in compliance with all applicable requirements for this emission unit? X Yes ____No

If no, complete the **Schedule of Compliance Form** as **ATTACHMENT F**.

ATT	ACHMENT E - Emission Uni	t Form			
Emission Unit Description					
Emission unit ID number C-003	Emission unit name: C-003	List any control devices associated with this emission unit:			
Provide a description of the emission Reciprocating Engine / Integral Con		-	.):		
Manufacturer: Clark	Model number: RA-32	Serial number: NA			
Construction date: 1943	Installation date: 1943	Modification date(s):		
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 300 HI)			
Maximum Hourly Throughput: NA	Maximum Operating Schedule: 8,760				
Fuel Usage Data (fill out all applicate	ole fields)				
Does this emission unit combust fuel	? <u>X_</u> Yes No	If yes, is it? Indirect Fired	X Direct Fired		
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	ting of burners:		
300 HP		10,000 Btu/hp-hr			
List the primary fuel type(s) and if a the maximum hourly and annual fue Natural Gas 2,433.1 scf/hr / 21,313,956 scf/yr). For each fuel type	listed, provide		
Describe each fuel expected to be us	ed during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
Natural Gas	Pipeline Quality		1,233 Btu/scf		

Emissions Data				
Criteria Pollutants	Potentia	al Emissions		
	РРН	TPY		
Carbon Monoxide (CO)	See A	ppendix A		
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})				
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)				
Hazardous Air Pollutants	Potentia	al Emissions		
	PPH	TPY		
	See A	ppendix A		
Regulated Pollutants other than	Potential Emissions			
Carbon Monoxide (CO) Nitrogen Oxides (NO _X) Lead (Pb) Particulate Matter (PM _{2.5}) Particulate Matter (PM ₁₀) Total Particulate Matter (TSP) Sulfur Dioxide (SO ₂) Volatile Organic Compounds (VOC) Hazardous Air Pollutants Regulated Pollutants other than Criteria and HAP List the method(s) used to calculate versions of software used, source a	РРН	TPY		
List the method(s) used to calculate versions of software used, source and		es of any stack tests conducted,		
See Appendix A				

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

40 C.F.R. 63 Subpart **ZZZZ**

40 C.F.R. § 63.6603(a) and Table 2d (Line 6) - Maintenance Requirements

40 C.F.R. § 63.6605 – Operating Requirements

40 C.F.R. § 63.6625(e)(5), (h), and (j) - Monitoring Requirements

40 C.F.R. § 63.6640(a) and Table 6 (Line 9) – Continuous Compliance Requirements

40 C.F.R. § 63.6660 - Recordkeeping Requirements

40 C.F.R. § 63.6665 - General Requirements/Provisions

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. 63 Subpart **ZZZZ**

40 C.F.R. § 63.6603(a) and Table 2d (Line 6) – Change oil and oil filter, and inspect spark plugs, hoses, and belts every 4,320 hours of operation, or annually, whichever occurs first, and replace as necessary

 $40 \text{ C.F.R.} \ \S \ 63.6605, 63.6625(e)(5), 63.6640 \ and \ Table 6 \ (Line 9) - Work or Management Practices: Operate and Maintain the RICE according to the manufacturer's instructions OR develop and follow your own maintenance plan$

40 C.F.R. § 63.6625 (h) – Minimize Idle Time during Startup to not exceed 30 Minutes

40 C.F.R. § 63.6625 (j) – Oil Analysis Program in lieu of Oil change requirement in Table 2d (Line 6)

40 C.F.R. § 63.6655 (d), and (e)(3) – Keep records of maintenance conducted and operating schedule on the RICE

40 C.F.R. § 63.6660 - Records retained for five (5) years and readily available for expeditious review

Are you in compliance with all applicable requirements for this emission unit? X Yes ____No

If no, complete the **Schedule of Compliance Form** as **ATTACHMENT F**.

ATT	ACHMENT E - Emission Uni	t Form			
Emission Unit Description					
Emission unit ID number G-002	Emission unit name: G-002	List any control devices associated with this emission unit:			
Provide a description of the emission Reciprocating Engine / Generator;):		
Manufacturer: Kohler	Model number: 100REZGD	Serial number: NA			
Construction date: 08/22/2016	Installation date: 2018	Modification date(s):		
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 134.1	HP			
Maximum Hourly Throughput: NA	Maximum Annual Throughput: NA	Maximum Operatir 500	ng Schedule:		
Fuel Usage Data (fill out all applical	ole fields)				
Does this emission unit combust fuel	1? <u>X_</u> Yes No	If yes, is it? Indirect Fired	X Direct Fired		
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	ting of burners:		
134.1 НР		9,225 Btu/hp-hr			
List the primary fuel type(s) and if a the maximum hourly and annual fue Natural Gas 1,390 scf/hr / 695,000 scf/yr). For each fuel type	listed, provide		
Describe each fuel expected to be us	ed during the term of the permit.				
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value		
Natural Gas	Pipeline Quality		890 Btu/scf		

Emissions Data			
Criteria Pollutants	Potentia	l Emissions	
	РРН	TPY	
Carbon Monoxide (CO)	See A _J	ppendix A	
Nitrogen Oxides (NO _X)			
Lead (Pb)			
Particulate Matter (PM _{2.5})			
Particulate Matter (PM ₁₀)			
Total Particulate Matter (TSP)			
Sulfur Dioxide (SO ₂)			
Volatile Organic Compounds (VOC)			
Hazardous Air Pollutants	Potentia	l Emissions	
	PPH	TPY	
	See A _J	ppendix A	
Regulated Pollutants other than	Potential Emissions		
Criteria and HAP	РРН	TPY	
List the method(s) used to calculate versions of software used, source and		s of any stack tests conducted,	
See Appendix A			
••			

Applicable Requirements

List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or <u>construction permit</u> with the condition number. (*Note: Title V permit condition numbers alone are not the underlying applicable requirements*). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.

40 C.F.R. 60 Subpart JJJJ

40 C.F.R. § 60.4230(a)(4)(iv) - Applicability

40 C.F.R. § 60.4233(e), 60.4234, and Table 1 (Line 14) – Operating Requirements

40 C.F.R. § 60.4236(c) - Installation Requirements

40 C.F.R. § 60.4237(b) - Monitoring Requirements

40 C.F.R. § 60. 4243(b), (d), (e) and (g) – Compliance Requirements

40 C.F.R. § 60.4245(a) and (b) – Reporting Requirements

40 C.F.R. 63 Subpart **ZZZZ**

40 C.F.R. § 63.6590(c)(1) – General Requirements

X Permit Shield

For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)

40 C.F.R. 60 Subpart JJJJ

40 C.F.R. § 60.4233(e), 60.4234 and Table 1 (Line 14) – Unit shall comply with the emission standards set forth for NOx (2.0 g/hp-hr), CO (4.0 g/hp-hr) and VOC (1.0 g/hp-hr) for the entire life of the engine.

40 C.F.R. § 60.4237(b) – Install a non-resettable meter to monitor hours of operation.

40 C.F.R. § 60.4243(b) - Compliance;

- Permittee shall purchase a certified engine and operate and maintain the certified stationary SI ICE and control device according to the manufacturer's emissions related emissions instructions.
- Permittee must keep records of maintenance conducted to demonstrate compliance, but no performance testing is required.

40 C.F.R. § 60.4243(d) – Compliance/Operation;

- There is no time limit to operation of unit during emergency situations
- Operation of unit shall be limited to a maximum of 100 hours per calendar year for any combination of maintenance & readiness testing, emergency demand response, periods of voltage or frequency deviations and select non-emergency operations.
- Non-emergency operations shall not exceed 50 hours per calendar year and are to be counted as part of the maximum 100 hours per calendar year operation limitation as described in the previous paragraph

40 C.F.R. § 60.4243(e) – Permittee may operate unit using propane as alternative fuel solely during emergency operations for maximum 100 hours per calendar year.

40 C.F.R. § 60.4243(g) – Permittee shall maintain and operate air to fuel ratio controllers appropriately to minimize emissions.
40 C.F.R. § 60.4245(a) and (b) – Permittee shall keep records on maintenance conducted and hours of operation, both for emergency use and non-emergency use.
40 C.F.R. 63 Subpart 7272
40 C.F.R. 63.6590(c)(1) – Demonstrate compliance with this regulation by complying with the applicable parts of 40 CFR 60 Subpart JJJJ. No further requirements will apply under this subpart
Are you in compliance with all applicable requirements for this emission unit? X YesNo
If no, complete the Schedule of Compliance Form as ATTACHMENT F .

ATT	ACHMENT E - Emission Uni	t Form	
Emission Unit Description			
Emission unit ID number: BLR02	Emission unit name: BLR02	List any control dev with this emission u NA	
Provide a description of the emission Heating System Boiler; Raypack; 1.		 esign parameters, etc	.):
Manufacturer: Raypack	Model number: H8-1259B	Serial number: NA	
Construction date: NA	Installation date: 2017	Modification date(s):
Design Capacity (examples: furnace	s - tons/hr, tanks - gallons): 1.26 m	mBtu/hr	
Maximum Hourly Throughput: NA	Maximum Annual Throughput: NA	Maximum Operatin 8,760	ng Schedule:
Fuel Usage Data (fill out all applicat	ole fields)		
Does this emission unit combust fuel	? <u>X_</u> Yes No	If yes, is it?	
		X Indirect Fired	Direct Fired
Maximum design heat input and/or	maximum horsepower rating:	Type and Btu/hr ra	ting of burners:
1.26 mmBtu/hr		1.26 mmBtu/hr	
List the primary fuel type(s) and if a the maximum hourly and annual fue Natural Gas 1,021.9 scf/hr / 8,951,825 scf/yr). For each fuel type	listed, provide
Describe each fuel expected to be use	ed during the term of the permit.		
Fuel Type	Max. Sulfur Content	Max. Ash Content	BTU Value
Natural Gas	Pipeline Quality		1,233 Btu/scf

Emissions Data				
Criteria Pollutants	Potentia	1 Emissions		
	РРН	TPY		
Carbon Monoxide (CO)	See A _I	ppendix A		
Nitrogen Oxides (NO _X)				
Lead (Pb)				
Particulate Matter (PM _{2.5})				
Particulate Matter (PM ₁₀)				
Total Particulate Matter (TSP)				
Sulfur Dioxide (SO ₂)				
Volatile Organic Compounds (VOC)				
Hazardous Air Pollutants	Potentia	l Emissions		
	PPH	TPY		
	See Appendix A			
Regulated Pollutants other than	Potential Emissions			
Regulated Pollutants other than Criteria and HAP	РРН	TPY		
List the method(s) used to calculate to versions of software used, source and		s of any stack tests conducted,		
See Appendix A				

Applicable Requirements
List all applicable requirements for this emission unit. For each applicable requirement, include the underlying rule/regulation citation and/or construction permit with the condition number. (Note: Title V permit condition numbers alone are not the underlying applicable requirements). If an emission limit is calculated based on the type of source and design capacity or if a standard is based on a design parameter, this information should also be included.
45 CSR§2-3.1. – Opacity Limit; shall not exceed ten (10) percent opacity
X Permit Shield
For all applicable requirements listed above, provide monitoring/testing/recordkeeping/reporting which shall be used to demonstrate compliance. If the method is based on a permit or rule, include the condition number or citation. (Note: Each requirement listed above must have an associated method of demonstrating compliance. If there is not already a required method in place, then a method must be proposed.)
45 CSR§2-3.2 – Compliance shall be determined using Method 9
Are you in compliance with all applicable requirements for this emission unit? XYesNo

If no, complete the Schedule of Compliance Form as ATTACHMENT ${\bf F}.$

ATTACHMENT F

SCHEDULE OF COMPLIANCE FORM (NOT APPLICABLE)

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

ATTACHMENT G

AIR POLLUTION CONTROL DEVICE FORM (NOT APPLICABLE)

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

ATTACHMENT H

COMPLIANCE ASSURANCE MONITORING FORM (NOT APPLICABLE)

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

APPENDIX A

SUPPORTING CALCULATIONS

Title V Operating Permit Renewal Application

Glenville Compressor Station #37, Facility ID No. 021-00010 Glenville, West Virginia

> Diversified Midstream LLC 101 McQuiston Drive Jackson Center, Pennsylvania

Table 1. Annual Potential To Emit (PTE) Summary Diversified Midstream IIC - Glenville Station #37

Criteria Pollutants

Potential to Emit (PTE) - Criteria Pollutants

Source	PM	PM10	PM2.5	SO2	NOx	со	voc	CO2e
Engines (ton/yr)	1.904	1.904	1.904	0.023	124.961	15.216	4.730	4616.114
Generator (ton/yr)	0.006	0.006	0.006	0.000	0.148	0.296	0.074	36.216
Boilers (ton/yr)	0.035	0.035	0.035	0.003	0.458	0.385	0.025	661.643
Tanks (ton/yr)							0.810	
Fugitives (ton/yr)							1.744	26.614
Blowdown Venting (ton/yr)							0.849	64.214
Total Emissions (ton/yr)	1.945	1.945	1.945	0.026	125.567	15.897	8.233	5404.802
Total Emissions (lb/hr)	0.444	0.444	0.444	0.006	28.668	3.629	1.880	1233.973

Hazardous Air Pollutants (HAPs)

Potential to Emit (PTE) - HAPs

Source	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	Formaldehyde	Total HAPs
Engines (ton/yr)	 0.076	0.038	0.004	0.011	0.018	2.176	3.135
Generator (ton/yr)	 0.000	0.000	0.000	0.000		0.006	0.010
Boilers (ton/yr)	 0.000	0.000			0.008	0.000	0.009
Tanks (ton/yr)	 						
Fugitives (ton/yr)	 0.008	0.000	0.001	0.002	0.002		0.012
Blowdown Venting (ton/yr)	 0.004	0.000	0.000	0.001	0.001		0.006
Total Emissions (ton/yr)	 0.089	0.038	0.006	0.013	0.028	2.183	3.171
Total Emissions (lb/hr)	 0.020	0.009	0.001	0.003	0.006	0.498	0.724

Table 2. Natural Gas-Fired Compressor Emissions Clark; RA-32; 2SLB Diversified Midstream LLC - Glenville Station #37

Pollutant	Emission Factor	PTE per Engine (lb/hr)	PIE per Engine (ton/yr)
Criteria Pollutants			
PM10/PM2.5	3.84E-02 lb/MMBtu	(2 0.115	0.505
PM Condensables	9.91E-03 lb/MMBtu	0.030	0.130
PM/PM10/PM2.5 **	9.91E-03 ID/MMBtu 4.83E-02 Ib/MMBtu	(2 0.145	0.130
PM/PM10/PM2.5	4.83E-02 ID/MINIBLU	0.145	0.633
SO ₂	5.88E-04 lb/MMBtu) (2) 0.002	0.008
NOv	2 17F. 00 lb/MMRtu	(2) 0.510	41 654
CO	2 86F 01 lb/MMRtu) 1.158	5 072
		<u></u>	
VOC	1.20E-01 lb/MMBtu) 0.300	1.577
Hazardous Air Pollutants		(2	
1,1,2,2-Tetrachloroethane	6.63E-05 lb/MMBtu	0.000	0.001
1,1,2-Trichloroethane	5.27E-05 lb/MMBtu	0.000	0.001
1,3-Butadiene	8.20E-04 lb/MMBtu	0.002	0.011
1,3-Dichloropropene	4.38E-05 lb/MMBtu	0.000	0.001
2-Methylnaphthalene	2.14E-05 lb/MMBtu	(2 0.000	0.000
2,2,4-Trimethylpentane	8.46E-04 lb/MMBtu	0.003	0.011
Acetaldehyde	7.76E-03 lb/MMBtu	(2 0.023	0.102
Acrolein	7.78E-03 lb/MMBtu	0.023	0.102
Benzene	1.94E-03 lb/MMBtu	0.006	0.025
Biphenyl	3.95E-06 lb/MMBtu	0.000	0.000
Carbon Tetrachloride	6.07E-05 lb/MMBtu	0.000	0.001
Chlorobenzene	4.44E-05 lb/MMBtu	0.000	0.001
Chloroform	4.71E-05 lb/MMBtu	0.000	0.001
Ethylbenzene	1.08E-04 lb/MMBtu	(2 0.000	0.001
Ethylene Dibromide	7.34E-05 lb/MMBtu	0.000	0.001
Formaldehyde	5.52E-02 lb/MMBtu	(2 0.166	0.725
Methanol	2.48E-03 lb/MMBtu	0.007	0.033
Methylene Chloride	1.47E-04 lb/MMBtu	0.000	0.002
n-Hexane	4.45E-04 lb/MMBtu	0.001	0.006
Naphthalene	9.63E-05 lb/MMBtu	0.000	0.001
PAH (POM)	1.34E-04 lb/MMBtu	0.000	0.002
Phenol	4.21E-05 lb/MMBtu	0.000	0.001
Styrene	5.48E-05 lb/MMBtu	(2 0.000	0.001
Toluene	9.63E-04 lb/MMBtu	0.003	0.013
Vinyl Chloride	2.47E-05 lb/MMBtu	(2 0.000	0.000
Xylenes	2.68E-04 lb/MMBtu	0.001	0.004
) (2	
		ì	
)	
		(2	

		(
		(:
) (:
) (:
)
)
)
		(

Total HAPs				0.239	1.045		
Greenhouse Gas Emissions							
CO_2	116.98	lb/MMBtu	(3)	350.94	1537.12		
CH ₄	2.2E-03	lb/MMBtu	(3)	0.01	0.03		
N_2O	2.2E-04	lb/MMBtu	(3)	0.00	0.00		
$CO_2e^{(b)}$	-	-		351.30	1538.70		
** PM Emission Factor is a Total PM EF including condesables and filterables							

(2)

Calculations: If emission factor note 1 is used, use calculation (a). If emission factor note 2 or 3 is used, use calculation (b).

⁽a) Annual emissions (tons/yr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * Annual Hours of operation (hr/yr) * (1ton/2000lbs) * (lb/453.6g)

⁽b) Annual emissions (tons/yr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000Btu) * Engine Power Output (hp) * Average BSFC (Btu/hp-hr) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)

EMISSIONS INPUTS TABLE Number of Units = Engine Power Output (kW) = Engine Power Output (hp) = Average BSFC (BTU/HP-hr) = 300 Heat Content I atural Gas(Btu/scf) = 10,000 (4) Fuel Throughput (ft3/hr) = Fuel Throughput (mmft3/yr) = 1.233.0 2,433.1 (6) iours of Operation 21.3 (b) CO₂ equivalent = [(CO₂ emissions)* [GWP_{CO2})]+[(CH₄ emissions)* (GWP_{CH4})]+[(N₂O e Global Warming Potential (GWP) sions)*(GWP_{N2O})] ${\rm CO_2}$ $\mathrm{CH_4}$ 25 (7) 298 N_2O (7) Notes: (1) Manufacturers Spec Sheet (2) AP-42. Chapter 3.2. Table 3.2-1. N Lean-Burn Engines. tural Gas-fired Reciprocating Engines (7/00). Uncontrolled Emission Factors for 2-Stroke (3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2. (4) Fuel consumption from manufactu er's specification sheet. (5) Value obtained from AP-42, section 3.2 (6) Fuel throughput = BSFC (BTU/HP-hr x Power (HP) / Heat Content (BTU/scf) (7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 3. Reciprocating Engine / Generator Emissions Kohler; 100 kW Em. Generator (100REZGD) Diversified Midstream LLC - Glenville Station #37

Pollutant	Emission Factor		PTE (lb/	/hr)	PTE (tor	ı/ yr)	
Criteria Pollutants							
PM10/PM2.5	9.50E-03 lb/MMBtu	(1)	0.012	(a)	0.003	(c)	
PM Condensables	9.10E-03 lb/MMBtu	(1)	0.011	(a)	0.003	(c)	
PM/PM10/PM2.5 **	1.94E-02 lb/MMBtu	(1)	0.024	(a)	0.006	(c)	
SO ₂	5.88E-04 lb/MMBtu	(1)	0.001	(a)	0.000	(c)	
NOx	2.00E+00 g/hp-hr	(2)	0.591	(b)	0.148	(d)	
СО	4.00E+00 g/hp-hr	(2)	1.183	(b)	0.296	(d)	
<u>voc</u>	1.00E+00 g/hp-hr	(2)	0.296	(b)	0.074	(d)	
Hazardous Air Pollutants							
1,1,2,2-Tetrachloroethane	2.53E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
1,1,2-Trichloroethane	1.53E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
1,3-Butadiene	6.63E-04 lb/MMBtu	(1)	0.001	(a)	0.000	(c)	
1,3-Dichloropropene	1.27E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Acetaldehyde	2.79E-03 lb/MMBtu	(1)	0.003	(a)	0.001	(c)	
Acrolein	2.63E-03 lb/MMBtu	(1)	0.003	(a)	0.001	(c)	
Benzene	1.58E-03 lb/MMBtu	(1)	0.002	(a)	0.000	(c)	
Carbon Tetrachloride	1.77E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Chlorobenzene	1.29E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Chloroform	1.37E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Ethylbenzene	2.48E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Ethylene Dibromide	2.13E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Formaldehyde	2.05E-02 lb/MMBtu	(1)	0.025	(a)	0.006	(c)	
Methanol	3.06E-03 lb/MMBtu	(1)	0.004	(a)	0.001	(c)	
Methylene Chloride	4.12E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Naphthalene	9.71E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
PAH (POM)	1.41E-04 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Styrene	1.19E-05 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Toluene	5.58E-04 lb/MMBtu	(1)	0.001	(a)	0.000	(c)	
Vinyl Chloride	7.18F-06 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Xylenes	1.95E-04 lb/MMBtu	(1)	0.000	(a)	0.000	(c)	
Total HAPs			0.040		0.010		
Greenhouse Gas Emissions							
CO ₂	116.98 lb/MMBtu	(3)	144.72	(a)	36.18	(c)	
CH ₄	2.2E-03 lb/MMBtu	(3)	0.00	(a)	0.00	(c)	
N ₂ O	2.2E-04 lb/MMBtu	(3)	0.00	(a)	0.00	(c)	
$CO_2e^{(e)}$			144.86		36.22		

^{**} PM Emission Factor is a Total PM EF including condesables and filterables

Calculations:

- Hourly Emissions If emission factor note 1 or 3 is used, use calculation (a). If emission factor note 2 is used, use calculation (b).

 (a) Maximum Hourly Emissions (lb/hr) = Emission factor (lb/MMBtu) * (1MMBtu/1000000 Btu) * Engine Power Output (hp) * Average BSFC (Btu/hp-hr)

(b) Maximum Hourly Emissions (lb/hr) = Emission factor (g/hp-hr) * Engine Power Output (hp) * (lb/453.6g)

Annual Emissions - If emission factor note 1 or 3 is used, use calculation (c). If emission factor note 2 is used, use calculation (d).

(c) Annual emissions (tons/rp) = Emission factor (lb/MMBtu) * (1MMBtu/1000000Btu) * Engine Power Output (hp) * Average ESFC

(c) Annual emissions (tons/yr) = Emission face	ctor (lb/MMBtu) [:]	* (1MMBtu/1000000Btu) * Engine Power Output (hp) * Average BSFC (Btu/hp-
hr) * Annual Hours of operation (hr/yr) * (1to	on/2000lbs)	
(d) Annual emissions (tons/yr) = Emission ia	ctor (g/hp-hr) * F	ngine Power Output (hp) * Annual Hours of operation (hr/yr) * (1ton/2000lbs)
(lb/453.6g)		
EMISSION INPUTS TABLE		
Engine Power Output (kW)	100.0	
Engine Power Output (hp)	134.1	(4)
Average BSFC (BTU/HP-hr) =	9,225	(4)
Heat Content Natural Gas(Btu/scf) =	890.0	(4)
Fuel Throughput (ft3/hr) =	1,390.0	(6)

(e) CO2 equivalent = [(CO2 emissions)*(GWP $_{C02}$)]+[(CH4 emissions)*(GWP $_{CH4}$)]+[(N2O emissions)*(GWP $_{N2O}$)] Global Warming Potential (GWP)

500

CO_2	1	(7)
CH ₄	25	(7)
NO	900	(7)

Notes:

- (1) AP-42, Chapter 3.2, Table 3.2-3. Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines (7/00)
- (2) Emission factors supplied from manufacturer's specification sheets
- (3) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.
- (4) Value is obtained from manufacturer's specification sheet.

PTE Hours of Operation =

- (5) Value is obtained AP-42, Chapter 3.2, Table 3.2-3., Note b
- (6) Fuel throughput = BSFC (BTU/HP-hr) x Power (HP) / Heat Content (BTU/scf)
- (7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 4. Heating Boiler Emissions (BIR02) Raypack; 1.26 mmBtu/hr Diversified Midstream ILC - Glenville Station #37

Pollutant	Emissio	ission Factor			'hr)	PTE (ton/yr)	
Criteria Pollutants							
PM/PM10/PM2.5	7.6E+00 lb/	MMcf	(1)	0.008	(a)	0.034	(b)
SO ₂	6.0E-01 lb/	/MMcf	(1)	0.001	(a)	0.003	(b)
NOx	1.0E+02 lb/	/MMcf	(2)	0.102	(a	0.448	(b)
co	8.4E+01 lb/	/MMcf	(2)	0.086)	0.376	(b)
					(a		
voc	5.5E+00 lb/	/MMcf	(1)	0.006	(a)	0.025	(b)
Hazardous Air Pollutants							
Arsenic	2.00E-04 lb/	/MMcf	(3)	0.000	(a	0.000	(b)
Benzene	2.10E-03 lb/	/MMcf	(4)	0.000)	0.000	(b)
Beryllium	1.20E-05 lb/	/MMcf	(3)	0.000	(a	0.000	(b)
Cadmium	1.10E-03 lb/		(3)	0.000)	0.000	(b)
Chromium	1.40E-03 lb/		(3)	0.000	(a)	0.000	(b)
Cobalt	8.40E-05 lb/		(3)	0.000	, (a	0.000	(b)
Dichlorobenzene	1.20E-03 lb/		(4)	0.000)	0.000	(b)
Formaldehyde	7.50E-02 lb/		(4)	0.000	(a	0.000	(b)
Hexane	1.80E+00 lb/		(4)	0.002)	0.008	(b)
Lead	5.00E-04 lb/		(3)	0.000	(a	0.000	(b)
Manganese	3.80E-04 lb/		(3)	0.000)	0.000	(b)
Mercury	2.60E-04 lb/		(3)	0.000	(a)	0.000	(b)
Naphthalene	6.10E-04 lb/		(4)	0.000	(a	0.000	(b)
Nickel PAH/POM	2.10E-03 lb/		(3) (4)	0.000)	0.000	(b)
Solonium	1.29E-03 lb/ 2.40E-05 lb/		(3)	0.000	(a	0.000	(b)
3000000	2.40E-03 ID/	IVIIVICI	(3)	0.000)	U.UUU	(b)
					(a		
)		
)		
					(a		
)		
					(a		
) (a		
) (a		
) (a		
Toluene	3.40E-03 lb/	/MMcf	(4)	0.000) (a)	0.000	(b)
Total HAPs	1			0.000		0.008	
				0.000		U.UU0	
Greenhouse Gas Emissions CO ₂	116.98 lb/	/MMRtu	(6)	147.39	(a)	045.50	(P
N .	1				(c)	645.59	(d)
CH ₄	2.2E-03 lb/		(6)	0.00	(c)	0.01	(d)
N_2O	2.20E-04 lb/	/MMBtu	(6)	0.00	(c)	0.00	(d)
$\mathbf{CO_2}\mathbf{e^{(e)}}$	-	-		147.55		646.26	
1							

Calculations:

IB/MMCF

- $(a) \ \ Hourly\ emissions\ (lb/hr) = Emission\ Factor\ (lb/MMcf)\ ^*\ Fuel\ Use\ (MMCF/yr)\ /\ Annual\ hours\ of\ operation\ (hr/yr)$
- (b) Annual emissions (ton/yr) = Emission Factor (lb/MMcf) * Fuel Use (MMcf/yr) * (1ton/2000lbs)

LB/MMBTU

- (c) Hourly Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Fuel Use (MMBtu/hr)
- $(d) \ Annual \ Emissions \ (ton/yr) = Emission \ Factor \ (lb/MMBtu) * Fuel \ Use \ (MMBtu/hr) * Hours \ of \ operation \ (hr/yr) * (1ton/2000lbs)$

EMISSION INPUTS TABLE

Fuel Use (MMBtu/hr) = 1.26
Number of Boilers = 1
Hours of Operation (hr/yr) = 8760
MMBtu/MMcf = 1233
PTE Fuel Use (MMft3/yr) = 8.952

 $(e) \ CO_2 \ equivalent = [(CO_2 \ emissions)*(GWP_{CO2})] + [(CH_4 \ emissions)*(GWP_{CH4})] + [(N_2O \ emissions)*(GWP_{N2O})] + [(N_2O \ emissions)*(GW$

Global Warming Potential (GWP)				
	CO_2	1	(7)	
	CH_4	25	(7)	
	N ₂ U	298	(7)	
Notes:				
(1) AP-42, Chapter 1.4, Table 1.4-2. Emission Facto	rs For Crite	eria Pollutar	nts and Green	nhouse Gases From Natural Gas Combustion, July
1998.				
(2) AP-42, Chapter 1.4, Table 1.4-1. Emission Facto	rs For Nitr	ogen Oxides	s (NOx) and Ca	Carbon Monoxide (CO) From Natural Gas
Combustion, July 1998.				
(3) AP-42, Chapter 1.4, Table 1.4-4. Emission Facto	rs For Met	als From Na	itural Gas Con	mbustion, July 19 08.
(4) AP-42, Chapter 1.4, Table 1.4-3. Emission Facto	urs for Snec	riated Organ	nic Compound	ds from Natural Cas Combustion, July 1998
(5) AP-42, Chapter 5.3, Section 5.3.1	is for spec	micu organ	ne compound	is from reactiful das combustion, sury 1000.
(6) Emission factors are from 40 CFR 98, Subpart C	Table C	and C 2		
(7) Global Warming Potentials obtained from 40 Cl			ο Δ-1	
(7) Global Walling Lotelitate obtained from 10 Cr	. к оо, опор	MILA, IUDA	C A-1	

	D	Manufacturer Unknown; (iversified Midstream IIC - Gl						
	Pollutant	Enission Factor		PTE (lb/	/hr)	PTE (to	1/yr)	
Cri	teria Pollutants							
P	I/PM10/PM2.5	7.6 lb/MMcf	(1)	0.000	(a)	0.001	(b)	
S)2	0.6 lb/MMcf	(1)	0.000	(a)	0.000	(b)	
	Ox	100 lb/MMcf	(2)	0.002	(a	0.011	(b)	
C)	84 lb/MMcf	(2)	0.002)	0.009	(b)	
		u u			(a	II .	ı.	
V	DC	5.5 lb/MMcf	(1)	0.000	(a)	0.001	(b)	
Ħ		W. AM. MANAGE	<u> </u>	0.000	(11)	0.001	(5)	
Ha	zardous Air Poliutants							
	Arsenic	2.00E-04 lb/MMcf	(3)	0.000	(a	0.000	(b)	
	Benzene	2.10E-03 lb/MMcf	(4)	0.000)	0.000	(b)	
	Beryllium	1.20E-05 lb/MMcf	(3)	0.000	(a	0.000	(b)	
	Cadmium	1.10E-03 lb/MMcf	(3)	0.000)	0.000	(b)	
	Chromium	1.40E-03 lb/MMcf	(3)	0.000	(a)	0.000	(b)	
	Cobalt	8.40E-05 lb/MMcf	(3)	0.000	, (a	0.000	(b)	
	Dichlorobenzene	1.20E-03 lb/MMcf	(4)	0.000)	0.000	(b)	
	Formaldehyde	7.50E-02 lb/MMcf	(4)	0.000	(a	0.000	(b)	
	Hexane	1.80E+00 lb/MMcf	(4)	0.000)	0.000	(b)	
	Lead	5.00E-04 lb/MMcf	(3)	0.000	(a	0.000	(b)	
	Manganose	3.80E-04 lb/MMcf 2.60E-04 lb/MMcf	(3)	0.000) (a	0.000	(b)	
	Mercury Naphthalene	6.10E-04 lb/MMcf	(3) (4)	0.000 0.000)	0.000 0.000	(b)	
	Vapnulaiene Vickel	2.10E-03 lb/MMcf	(3)	0.000	(a	0.000	(b) (b)	
	PAH/POM	1.29E-03 lb/MMcf	(4)	0.000)	0.000	(b) (b)	
	Selenium	2.40E-05 lb/MMcf	(3)	0.000	(a	0.000	(b)	
			(-,)	0.000	(5)	
					(a)			
					(a			
)			
					(a			
)			
					(a			
					, (a			
)			
					(a			
)			
					(a)			
7	Гоluene	3.40E-03 lb/MMcf	(4)	0.000	(a)	0.000	(b)	
Tot	al HAPs			0.000		0.000		
Gre	eenhouse Gas Emissions							
CC	O_2	116.98 lb/MMBtu	(6)	3.51	(c)	15.37	(d)	
CI		2.2E-03 lb/MMBtu	(6)	0.00	(c)	0.00	(d)	
	=					0.00	(d)	
N ₂	,0 (e)	2.20E-04 lb/MMBtu	(6)	0.00	(c)	0.00	(u)	
) (e)			9 5 1				

Calculations: IB/MMCF

 $CO_2e^{(e)} \\$

- (a) Hourly emissions (lb/hr) = Emission Factor (lb/MMcf) * Fuel Use (MMCF/yr) / Annual hours of operation (hr/yr)
- (b) Annual emissions (ton/yr) = Emission Factor (lb/MMcf) * Fuel Use (MMcf/yr) * (1ton/2000lbs)

IB/MMBTU

- (c) Hourly Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Fuel Use (MMBtu/hr)
- $(d) \ Annual \ Emissions \ (ton/yr) = Emission \ Factor \ (lb/MMBtu) * Fuel \ Use \ (MMBtu/hr) * Hours \ of \ operation \ (hr/yr) * (1ton/2000lbs) \\ (d) \ Annual \ Emissions \ (ton/yr) = Emission \ Factor \ (lb/MMBtu) * Fuel \ Use \ (MMBtu/hr) * Hours \ of \ operation \ (hr/yr) * (1ton/2000lbs) \\ (d) \ Annual \ Emissions \ (ton/yr) = Emission \ Factor \ (lb/MMBtu) * Fuel \ Use \ (MMBtu/hr) * Hours \ of \ operation \ (hr/yr) * (1ton/2000lbs) \\ (d) \ Annual \ Emissions \ (ton/yr) = Emission \ Factor \ (lb/MMBtu) * Fuel \ Use \ (lb/MBtu/hr) * Hours \ of \ operation \ (hr/yr) * (1ton/2000lbs) \\ (d) \ Annual \ Emissions \ (ton/yr) = Emission \ Factor \ (lb/MMBtu) * Fuel \ Use \ (lb/MBtu/hr) * Hours \ of \ operation \ (hr/yr) * (1ton/2000lbs) \\ (d) \ Annual \ Emissions \ (ton/yr) = Emission \ Factor \ (lb/MBtu) * ($

3.51

15.39

EMISSION INPUTS TABLE

Fuel Use (MMBtu/hr) = 0.03 Number of Boilers = 1 Hours of Operation (hr/yr) = 8760 MMBtu/MMcf = 1233 PTE Fuel Use (MMft3/yr) = 0.213

⁽e) CO₂ equivalent = $[(CO_2 \text{ emissions})*(GWP_{CO2})]+[(CH_4 \text{ emissions})*(GWP_{CH})]+[(N_2O \text{ emissions})*(GWP_{N2O})]$ Global Warming Potential (GWP)

CO_2	1	(7)
CH ₄	25	(7)
N,0	298	(7)

Notes:

- (1) AP-42, Chapter 1.4, Table 1.4-2. Emission Factors For Criteria Pollutants and Greenhouse Gases From Natural Gas Combustion, July 1998.
- (2) AP-42, Chapter 1.4, Table 1.4-1. Emission Factors For Nitrogen Oxides (NOx) and Carbon Monoxide(CO) From Natural Gas Combustion, July 1998.
- (3) AP-42, Chapter 1.4, Table 1.4-4. Emission Factors For Metals From Natural Gas Combustion, July 1998.
- $(4)\ AP-42,\ Chapter\ 1.4,\ Table\ 1.4-3.\ Emission\ Factors\ for\ Speciated\ Organic\ Compounds\ from\ Natural\ Gas\ Combustion,\ July\ 1998.$
- (5) AP-42, Chapter 5.3, Section 5.3.1
 (6) Emission factors are from 40 CFR 98, Subpart C, Table C-1 and C-2.
 (7) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 6. Tank Emissions Diversified Midstream ILC - Glenville Station #37

Emission Point	Tank Capacity (gal)	Tank Contents	Control Devices	Tank Throughput (bbls/day)	VOC Emiss Factor (lbs/		VOC Emissions (lbs/yr) ^(a)	VOC Emissions (lb/hr) ^(b)	VOC Emissions (tons/yr) ^(c)
Tank 1	2000	Oil Tank	None	3.13	1.35E-03	(1)	1.54	0.000	0.001
Tank 2	4000	Pipeline Condensate	None	3.13	1.42E+00	(1)	1618.17	0.185	0.809
Totals							1619.71	0.18	0.81

Calculations:

- (a) VOC Emissions (lb/day) = Tank Throughput (bbls/day) * VOC Emission Factor (lbs/bbls)
- (b) VOC Emissions (lb/hr) = VOC Emissions (lbs/yr) * (yr/8760hr)
- (c) VOC Emissions (ton/yr) = VOC Emissions (lbs/yr) * (1ton/2000lbs)

Notes

 $(1)\ VOC\ emission\ factor\ includes\ Working/Breathing\ losses\ as\ calculated\ from\ TANKS\ 4.0.9.d$

Table 7. Fugitive Leak Emissions Diversified Midstream LLC - Glenville Station #37

Pollutant	Emission	Factor (1)	PTE ^{(a) Gas Service} (tons/yr)	PTE VOC emissions (ton/yr)	PTE CO ₂ e emissions (ton/yr)	PTE Total HAPs emissions (ton/yr)
Valves	9.9E-03	lb/hr/source	6.035	1.218	18.580	0.008
Pressure Relief Valves	1.9E-02	lb/hr/source	0.085	0.017	0.261	0.000
Connectors (2)	8.6E-04	lb/hr/source	2.231	0.450	6.870	0.003
Open Ended Lines	4.4E-03	lb/hr/source	0.039	0.008	0.119	0.000
Compressor(s)	1.9E-02	lb/hr/source	0.255	0.051	0.784	0.000
Total	-	-	8.644	1.744	26.614	0.012
Pollutant	PTE Benzene emissions (ton/yr)	PTE Toluene emissions (ton/yr)	PTE Ethylbenzene emissions (ton/yr)	PTE Xylenes emissions (ton/yr)	PTE n-Hexane emissions (ton/yr)	
Valves	5.43E-03	6.03E-06	6.03E-04	1.21E-03	1.21E-03	
Pressure Relief Valves	7.64E-05	8.49E-08	8.49E-06	1.70E-05	1.70E-05	
Connectors (2)	2.01E-03	2.23E-06	2.23E-04	4.46E-04	4.46E-04	
Open Ended Lines	3.47E-05	3.86E-08	3.86E-06	7.72E-06	7.72E-06	
Compressor(s)	2.29E-04	2.55E-07	2.55E-05	5.09E-05	5.09E-05	
Total	0.01	0.00	0.00	0.00	0.00	

Calculations:

(a) Annual emissions (tons/yr) = [Emission Factor (lb/hr/source)] x [Number of Sources] x [Hours of Operation per Year] x [ton/2000lb]

WET GAS INPUTS TABLE

Gas Stream Components	Wt Percent	(3)
Methane	61.03%	
Ethane	17.26%	
Nitrogen	1.38%	
CO2	0.15%	
voc	20.18%	
Benzene	0.09%	
Toluene	0.00%	
Ethylbenzene	0.01%	
Xylenes	0.02%	
n-Hexane	0.02%	

(4) Number of Components in Gas Service

vaives =	139	
Pressure Relief Valves =	1	
Connectors =	593	
Open Ended Lines =	2	
Compressors =	3	
Maximum Hour of Operation =	8,760	
ng Potential (GWP)		

Global	Warming	Potential	(GWP)
шова	***********************	rottinui	(4111)

CO_2	1	(5)
CH ₄	25	(5)
N_2O	298	(5)

- (1) Emission factors from 1995 EPA Protocol for Equipment Leak Emission Estimates, Table 2-4 Oil and Gas Production
- (2) Connectors is assumed to include flange connections in the total count
 (3) VOC wt % calculated from gas sample analysis for facility
- (4) Default Average Component Counts for Major Onshore Natural Gas Production Equipment from 40 CFR 98, Subpart W, Table W-1B (5) Global Warming Potentials obtained from 40 CFR 98, Subpart A, Table A-1

Table 8. Compressor Blowdown Venting Emissions Diversified Midstream ILC - Glenville Station #37

Clark; RA-32; 2SIB							
Pollutant	Volume (scf/event)	Moles	Molecular Weight of Gas ⁽¹⁾	lbs Pollutant / event	Events per Year ⁽²⁾	Emissions (lbs/event)	Emissions (ton/yr)
VOC	1,000	2.60	20.77	10.89	156	10.89	0.849
Benzene	1,000	2.60	20.77	0.05	156	0.05	0.004
Toluene	1,000	2.60	20.77	0.00	156	0.00	0.000
Ethylbenzene	1,000	2.60	20.77	0.01	156	0.01	0.000
Xylenes	1,000	2.60	20.77	0.01	156	0.01	0.001
n-Hexane	1,000	2.60	20.77	0.01	156	0.01	0.001
CO2e	1,000	2.60	20.77	823.26	156	823.26	64.21

⁽¹⁾ Taken from supplied gas analysis.

(2) Worst case blowdown events per year = 156:1 blowdown per week, per unit x 3 units x 52 weeks = 156 blowdown events per year

TOTAL				
Pollutant	Emissions (lbs/event)	Emissions (ton/yr)		
VOC	10.89	0.85		
Benzene	0.05	0.00		
Toluene	0.00	0.00		
Ethylbenzene	0.01	0.00		
Xylenes	0.01	0.00		
n-Hexane	0.01	0.00		
Total HAPs	0.08	0.01		
CO2e	823.26	64.21		